Infrastructure-less Mobile Satellite Communication in Ka-Band for Disaster Relief Operations

Colloquium session “Satellite Services for Global Mobility”
14.10.2013

2013 Joint Conference

19th Ka and Broadband Communications, Navigation and Earth Observation Conference
31st AIAA International Communications Satellite Systems Conference

Holger Stadali, holger.stadali@iis.fraunhofer.de
Fraunhofer Institute for Integrated Circuits (IIS), Erlangen, Germany
Outline

- Introduction and Motivation
- Disaster relief scenarios
- Technical solution candidates
 - Available on the market
 - Hub-centric and hub-less architectures
- Antenna and link type characteristics
- Technical challenges
 - The meshed connectivity challenge
 - The satellite-on-the-move challenge
- Economical challenges, way forward and conclusions
Introduction

- Our communication world is a connected world
- State-of-the-Art communication systems are
 - Wireless, short range (cellular 3G/4G/WiFi)
 - Wireless, regional (satellite spot-beams)
 - Wired, local (POTS, cable and xDSL)
- Complemented by broadcast systems through
 - terrestrial, cable, and satellite distribution
- What’s common to all these communication systems?
 - Highly complex and mostly managed
 - Rely on working infrastructure
Introduction

- Provision of ubiquitous communication infrastructure is key for our society
 - And an extremely high effort is spent to enable this
- All communication infrastructure has some very basic requirements
 - (mains) power, interconnection, management, access to content
- And it works really very well 24/7 even in severe conditions
 - Weather conditions

- Resilience and quick recovery after blackouts / power surges

- So, everything fine?
Introduction

- No … from the point-of-view of our goal to provision ubiquitous communication
- Can you imagine how long it takes to re-establish communication?

Earthquake
Haiti 2010

Earthquake / Tsunami
Japan 2011
Introduction

Without being disrespectful, different types of disasters could be:

- Earthquakes
- Volcanic eruptions
- Cyclones, tsunamis, storm floods
- Avalanches, landslides
- Wide-area firestorms

Quick establishing of communication is key for the disaster relief
Motivation

- After such disaster - which communication is to be re-established?
- On short term (within 0 - 24 hrs after disaster event)
 - Communication needs of search- and rescue-teams
 - **Early response: Infrastructure-less communication required**
- On medium term (within a few days)
 - Emergency communication for the population
 - **Alternative infrastructure required**
- On long term (within a few months)
 - Regular communication for the population
 - Fiber and copper cables, backbones, service centers reinstalled
 - **Regular ground infrastructure rebuilt**
Motivation

- Short term (0 – 24 hrs)
 - Collect information
 - Share information
 - Coordinate work
- Medium term (days)
 - Larger teams
 - More management centers
 - Emergency communication
- Long term (months)
Motivation

- **Short term (0 – 24 hrs)**
 - Collect information
 - Share information
 - Coordinate work

- **Medium term (days)**
 - Larger teams
 - More management centers
 - Emergency communication

- **Long term (months)**
 - Dependency from ground infrastructure
 - Number of users
 - Amount of traffic
 - Importance of satellite solutions
Motivation

- **Short term (0 – 24 hrs)**
 - Collect information
 - Share information
 - Coordinate work

- **Medium term (days)**
 - Larger teams
 - More management centers
 - Emergency communication

- **Long term (months)**
 - Dependency from ground infrastructure
 - Number of users
 - Amount of traffic
 - Importance of satellite solutions

© Fraunhofer IIS
Motivation

- Ideally, the short- and medium-term solutions should be identical
 - A smooth transition between the search- and rescue- communication towards emergency communication reestablishing can be achieved

- Advantages for a single solution are:
 - Not a plurality of equipment required
 - The transition runs at the required pace, dependent on the severity and expansion of the disaster
 - Different priorities could be assigned by the disaster management
Early response

- Rescuers are informed about status and status updates
 - Upon arrival, during movement, during rescue operations
- Management center is informed about the scene
 - While the rescuer teams are working
- Required communication needs contain (incomplete list)
 - Video streams or video captures from the scene
 - Audio and video phone calls and conferences
 - Geographical map distribution and updates
 - Data exchange and internet access
Early response

- Quick installation of a local disaster management center
- Several small local coordination centers
 - Acting as local access points
- Base stations for cellular communication of rescuer teams
 - TETRA
 - 3G / 4G based
- Is all this feasible with today's technologies?
Alternative infrastructure

- Rebuilding of emergency communication for the population
- Requirement to bring back mobile communication into operation
 - eNB backhauling through satellite (non-GEO systems?)
- Rebuilding of (possibly remote or mobile) core network
 - In an area outside the disaster area, with mains power
- Installation of a lower number of (mobile) eNBs / base stations
 - Within the disaster area, where mains power is still unavailable
 - Installed on trucks with power generators and satellite backhauling
- Are today's cellular technologies ready for such usage?
Summary of Introduction

- The potential role of a satellite-based system for disaster relief
 - Completely stand-alone, self-organizing communication systems
 - Backhauling of mobile eNBs with remote core network
 - Terminals acting as gateway for small Wifi cells
- Application scenarios are “fixed” and “mobile” operation
 - Fixed: eNBs, Wifi access points, local disaster management center
 - Mobile: Trucks, helicopters, rescuers moving in/out/around
- Short and medium term solutions the are our focus
Technical solution candidates available on the market

- Let’s have a look, which technologies, solutions and systems are already available on the market
- Hub-centric systems (L-Band, C-Band, Ku/Ka-Band)
 - Latency issue, especially for GEO systems?
 - Direct on-board routing / through gateway?
 - Support for mobility?
 - Support for very-low SNR (small antennas)?
- Proprietary solutions?
- Hub-less systems?
Technical solution candidates available on the market

- General-purpose systems – world-wide availability (e.g. L-Band)
 - Iridium
 - Inmarsat 4
 - Thuraya
- Systems with dedicated frequency assignment and on-request availability
 - Emergency.lu (C-Band)
- Systems with shared (*) frequency assignment and world-wide availability
 - GlobalXpress (Ka-Band)
 - O3B (Ka-Band)
- And for sure many others…
- (*) shared = frequency is reused on other orbital positions
System Architecture – Hub-Centric

System architecture - Hub-centric system

- Gateway
- Disaster management center
- On-site team(s)
- On-site access point(s) (3G/WiFi)
- On-site management center
System Architecture – Hub-Centric

- Are Ka-Band systems like GlobalXpress suitable?
- Attractive coverage and cost/bit
- Interfacing to a hub-centric system
 - “Digital” (through gateway)
 - “Analog” (through satellite)
- Main missing elements are
 - Low latency (single-hop)
 - Support for different terminal types
 - Meshed connectivity
- Importance of missing elements?
Let’s broaden our view – which other concepts exist?

- Hub-less and fully meshed system
 - Today: mainly proof-of-concept
 - In the future: state-of-the-art?

Specificities of a fully meshed system
- One-to-one comm.
- One-to-many comm.
- Many-to-many comm.

Specificities of a hub-less system
- No dedicated master station
- Decentralized resource allocation?
Technical Challenges

- Self-organization of communication system
 - Few external parameters could be provided, like
 - Satellite orbital position
 - Satellite transponder frequency / polarization
- No centralized hub-station / dedicated satellite gateway
 - Management of resources among communication partners
 - Traffic priorities to be managed
- No large uplink antenna available
 - Decentralized uplink from different terminals crucial to properly drive satellite input feeds
Technical Challenges

- Applications requiring low-latency
 - Dual-hop less suitable, single-hop preferred
- Antenna tracking in mobile environment
- Support of antennas with different G/T and different directivity
- Modulation and channel coding suitable for mobile environment

A possible solution for the technical challenges we face in disaster relief is a self-organizing, fully meshed communication system, suitable for fixed and mobile communication conditions, and preferably through satellite.
Hub station based system (e.g. DVB-S2 / DVB-RCS)
- Designed for connectivity of satellite terminals to terrestrial networks
- Direct communication between satellite terminals is the exception

Direct connection between satellite terminals, either as
- One uplink terminal per carrier frequency active
- Uplink terminal with high UL-EIRP required (large dish)

Or
- Several subcarriers per transponder (FDMA)
- Bandwidth per subcarrier can be assigned according to UL-EIRP
System Architectures - Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Hub-centric</th>
<th>Hub-less multiple carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Sat-UE to Sat-UE</td>
<td>Double hop (>500ms)</td>
<td>Single hop (>250ms)</td>
</tr>
<tr>
<td>(if GEO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellite EIRP utilisation</td>
<td>Almost perfect</td>
<td>back-off in multi carrier</td>
</tr>
<tr>
<td></td>
<td>Low backoff</td>
<td>operation</td>
</tr>
<tr>
<td>Support of many UE</td>
<td>Yes</td>
<td>Limited to number of carriers</td>
</tr>
<tr>
<td>Support of mobility</td>
<td>DVB-RCS2 under development</td>
<td>Proprietary systems</td>
</tr>
<tr>
<td>Flexibility (e.g. dynamic</td>
<td>High</td>
<td>Limited, only carrier</td>
</tr>
<tr>
<td>assignment of resource)</td>
<td></td>
<td>bandwidth reconfiguration</td>
</tr>
<tr>
<td>Routing</td>
<td>Hub station</td>
<td>“Meshed” (if UL/DL same spot)</td>
</tr>
</tbody>
</table>

© Fraunhofer IIS
Disaster Relief – usage scenario

- High flexibility of target communication protocol
 - Should work with existing satellite (e.g. simple bent-pipe satellite)
 - Configurable according to satellite characteristics (UL-G/T, DL-EIRP)
- Different user terminals in a network
 - Mobile terminal
 - very small antennas which can be installed on any car
 - Small (e.g. 40cm) antennas which can be installed on trucks etc.
 - Antennas for fixed installation
 - Local head quarter with “large” (1 – 3m) antenna diameter
- Communication characteristic are not only one-to-one
Resulting requirements

- Support of different terminal types requires support of different antennas
 - LP (Low profile): Very small, can be installed on any car, mobile
 - HG (High gain): Standard terminal with medium size dish (40-60cm), optionally mobile
 - XG (Extra gain): Large antenna (e.g. 3m), used for local head quarters

- Support of different communication types
 - LP <-> LP: Voice calls
 - LP <-> HG: Voice calls, video uploads, regional coordination
 - HG <-> HG: Data exchange, eNB connectivity to core network
 - XG available: Communication with head quarter (Hub station or head quarter operational after days)
Link type characteristics

- Large discrepancies in the individual link budgets

Uplink 30 GHz
- **High Gain (HG)**
 - EIRP: 45 dBW
- **Low Profile (LP)**
 - EIRP: 25 dBW

Downlink 20 GHz
- **High Gain (HG)**
 - G/T: 13 dB/K
- **Low Profile (LP)**
 - G/T: -7 dB/K
Link type characteristics

- Power spectral densities

- Communication LP to LP
- Communication HG to HG
- Communication HG to LP

12-15 dB
Meshed Connectivity –
The link budget challenge

- **Situation:** Bent-pipe satellites typically assume high uplink EIRP
- In (pure) FDMA, several terminals are active at the same time
 - the effective uplink EIRP is the sum of the power of all active terminals
- **Drawbacks of (pure) FDMA**
 - Dynamic reconfiguration of symbol rate per terminal difficult to achieve (all terminals might need to move center frequencies)
 - Multi carrier operation of transponder requires higher back-off
 - For many scenarios it is difficult to bring the transponder into saturation anyway
 - Presence of multiple Tx terminals concurrently allows driving the satellite uplink properly
Meshed Connectivity – The link budget challenge

- TDMA shows major limitations for meshed connectivity
- Terminals transmitting a high instantaneous bandwidth can not drive the satellite input properly
- A minimum set of parallel FDMA carrier is required
 - Example given for small antenna dishes (40-60 cm)
 - Example for direct link between such terminals

![Graph showing C/N vs. Number of FDMA Carrier for different scenarios.]

Scenario: Direct link between small (e.g. 40 – 60cm) terminals

UL: Terminal > Sat
DL: Sat > Terminal
Insgesamt

TDMA
UL limiting factor
DL performance dominates
Meshed Connectivity –
The link budget challenge

- Solution: “enhanced FDMA systems”
 - MF-TDMA: Combines FDMA with TDMA
 - SC-FDMA: Well known from 4G (LTE)
- No “real” differences – just (important) details

<table>
<thead>
<tr>
<th>MF-TDMA</th>
<th>MF-TDMA</th>
<th>SC-FDMA</th>
<th>SC-FDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency hopping</td>
<td>Dynamic reconfiguration of Fcenter and BW</td>
<td>Localized carrier allocation</td>
<td>Distributed carrier allocation</td>
</tr>
<tr>
<td>For frequency selective fading</td>
<td>Highly flexible, Power efficient</td>
<td>Highly flexible, Power efficient</td>
<td>For frequency selective fading</td>
</tr>
<tr>
<td>High HW complexity</td>
<td></td>
<td>Low HW complexity</td>
<td></td>
</tr>
</tbody>
</table>
Meshed Connectivity – The link budget challenge

MF-TDMA
- Frequent carrier change
- Parallel demodulation of multiple (independent) TDM carrier

SC-FDMA
- Fixed time/frequency slots
- Flexible allocation of slots according to required resources
- Synchronous demodulations
Meshed Connectivity –
The link budget challenge

- Efficient meshed connectivity feasible only if some requirements are satisfied
 - Sufficient concurrent uplinks
 - Easy parallel demodulation of multiple carriers
 - Quick reconfiguration of terminal bandwidth
 - According to throughput needs and congestion situation
- SC-FDMA allows an efficient implementation of
 - A dynamically reconfigurable
 - Multi carrier demodulator
Technical Challenges – SOTM and tracking antennas

- In (Ku-/Ka-band) “satellite-on-the-move” systems, tracking antennas need to be used
- Main limitations:
 - Tracking antenna de-pointing (for high-gain, highly directive antennas)
 - Out-of-axis transmission (for low-profile, less directive antennas)
 - Regulations apply
Technical Challenges – SOTM and tracking antennas

- Uplink EIRP is also limited by interference constraints
- Defined by ITU S.524 or EN301459
- High pointing accuracy required (< 1°)

Example
- 40cm antenna
- 6dBW electrical power
- Allocated bandwidth 2.5MHz
Economical Challenges

- In order to be low in cost and high in acceptance, mobile satellite communication for disaster relief should benefit from the economy-of-scale of other application cases:
 - “meshed connectivity” should be available for a wider range of applications such that disaster relief is a “side application”
 - “mobile support” should be available also for a wider range of applications, such that disaster relief again is a “side application”
 - RF components, antenna tracking sub-systems and part of the baseband components should be “off-the-shelf”
- The solution must also be fully compatible to existing satellites in place
- Specific extensions (e.g. full on-board processing) should be avoided
 - On-board filtering could however be a nice research topic!
Way forward

- Our goal is to motivate
 - Wide industry support answering the real needs of disaster relief
 - Standardization of solutions to ease usage whenever / wherever necessary
- Standardization has a number of advantages:
 - Air interface is accepted by equipment industry and operators
 - Air interface is accepted by regulations (even allowing emergency satellite access or temporal extension of EIRP limits)
 - Access to commercial spectrum can even be granted by authorities for disaster relief operations
Main requirements of a disaster-relief communication system

- World-wide, unlimited usage
- No pre-installation required
 - (time / location of disaster mostly unforeseen)
- Low cost-of-ownership, including
 - cost of satellite capacity (EIRP, bandwidth)
 - On-ground infrastructure (if required)
 - Hardware and software development
 - Operation / training / shipment cost
- Efficient interconnectivity to other media
 - Internet, (mobile) core-networks, operation center
 - Backbone connectivity for mobile base stations
Main requirements of a disaster-relief communication system

- Support of a wide range of applications and QoS requirements
 - (Low) Latency
 - Different throughput requirements
 - Scalable reliability of communication
- No single point-of-failure
- Support of a high dynamic range
 - mobile and fixed operation
 - different types of antennas
 - scalable number of users
Conclusions

- This talk tried to motivate:
 - Equipment and Resources for communication shall be available everywhere on our planet since we never know where and when disasters occur
 - True infrastructure-less communication can only be established through use of satellite resources, and by means of equipment which is available in every country
 - The required equipment will only be made available if it can benefit from economy-of-scale, so the basis for a worldwide deployment is a well-accepted air interface standard incl. its rule of operation
References

- 6th Appleton Space Conference: Broadband Mobility via Satellite, A Technology Revolution, Marcus Vilaca, Inmarsat
- Prof. Albert Heuberger, “LMS Channel and Fade Mitigation Techniques”, Tutorial presentation, ASMS 2010, Cagliari
Fraunhofer-Gesellschaft

- Founded in Munich in 1949
- 60 institutes across Germany with a total staff of 22,000
- Five Fraunhofer Centers in the USA
- Representative offices and senior advisors in Asia, the Middle East and Moscow
- Total budget €1.8 billion with €1.5 billion of income generated from contract research

Headquarters in Munich
Fraunhofer IIS
Fraunhofer-Institute for Integrated Circuits

- Founded in 1985
- More than 750 staff
- Budget approx. €90 million
- Revenue sources
 > 75 % income from projects
 < 25 % public funding

- "HOME OF MP3"
Fraunhofer IIS
Research Areas and Business Fields

- IC-Design and Design Automation
- Audio / Video / Multimedia
- Digital Broadcasting Systems, Satellite Radio / Digital Terminals
- Communication Networks
- RF Systems and Antennas
- Optical and X-ray inspection systems
- Navigation and Localization
- Embedded Systems & Software
- Logistics and Service Development
- Medical Technology
- Defense and Security
Fraunhofer IIS
Tracking antenna test range

- FORTE: Facility for Over-the-air Research and Testing
- »SatCom« research platform
 - Complete emulation of a satellite link for testing of mobile terminals
 - Includes test range for tracking antennas in Ku- and Ka-band
- »MIMO-OTA« research platform
 - Universal over-the-air test environment
 - Wave-field synthesis for wireless devices up to 3 GHz
About the speaker

Holger Stadali
- Group Manager “Communication System Design”
- Communications Department
- holger.stadali@iis.fraunhofer.de

Fraunhofer IIS
- Am Wolfsmantel 33
- 91058 Erlangen, Germany
- Tel.: +49 9131 776-0
Thanks for your attention!

Image taken at our DVB-SH transmitter site in Erlangen